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ABSTRACT 

Glucagon-like peptide-1 receptor agonists ( GLP-1 RAs) have emerged as game-changers across the 
cardiovascular–kidney–metabolic ( CKM) spectrum: overweight/obesity, type 2 diabetes mellitus ( T2DM) and associated 
chronic kidney disease ( CKD) and cardiovascular disease ( CVD) . Liraglutide, semaglutide and tirzepatide are European 

Medicines Agency approved to improve metabolic control in T2DM and to decrease weight in persons with obesity [body 
mass index ( BMI) ≥30 kg/m2 ] or with overweight ( BMI ≥27 kg/m2 ) associated with weight-related comorbidities such as 
hypertension, dyslipidaemia, CVD and others. Additionally, liraglutide and semaglutide are approved to reduce CVD risk 
in patients with CVD and T2DM. Semaglutide is also approved to reduce CVD risk in patients with CVD and either 
obesity or overweight and in phase 3 clinical trials showed kidney and cardiovascular protection in patients with T2DM 

and albuminuric CKD ( FLOW trial) as well as in persons without diabetes that had CVD and overweight/obesity ( SELECT 

trial) . Thus, nephrologists should consider prescribing GLP-1 RAs to improve metabolic control, reduce CVD risk or 
improve kidney outcomes in three scenarios: patients with overweight and a related comorbid condition such as 
hypertension, dyslipidaemia or CVD, patients with obesity and patients with T2DM. This review addresses the promising 
landscape of GLP-1 RAs to treat persons with overweight or obesity, with or without T2DM, within the context of CKD, 
assessing their safety and impact on weight, metabolic control, blood pressure and kidney and cardiovascular outcomes, 
as part of a holistic patient-centred approach to preserve CKM health. 
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More than half of the world’s population is projected to have 
overweight/obesity by 2035 [3 ]. Overweight and obesity are in- 
dependently associated with an increased risk of cardiovas- 
cular disease ( CVD) , which causes death in more than two- 
thirds of patients [4 ]. Furthermore, obesity increases the risk of 
T2DM, hypertension and CKD [5 , 6 ]. The three conditions fre- 
quently coexist, as recently emphasized by the cardiovascular–
kidney–metabolic ( CKM) syndrome scientific statement from the 
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NTRODUCTION 

hronic kidney disease ( CKD) is among the fastest growing 
auses of death worldwide, driven by population aging and 
he increasing prevalence of overweight/obesity, type 2 diabetes 
ellitus ( T2DM) and hypertension [1 ]. Overweight and obe- 
ity are defined by the World Health Organization as having a
ody mass index ( BMI) ≥25–< 30 and ≥30 kg/m2 , respectively [2 ].
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Direct effects:
• Altered renal hemodynamics: 
  glomerular hypertrophy/hyperfiltration
• RAAS activation
• Chronic inflammation
• Altered adipokine dynamics
• Lipotoxicity
• Insulin resistance

Indirect effects:
• Hypertension
• Atherosclerosis 
• T2DM

Chronic kidney disease 

Drivers of obesity:
• Sedentary lifestyle
• Diet
• Others

Antidiabetic drugs

Antihypertensive drugs

Cardiovascular protection

Diet and
lifestyle
changes

GLP1ra

Satiety Weight 
loss

Antihypertensive effect
Cardiovascular protection
Antidiabetic effects

Overweight
Obesity

Over 56% to
83% mediation

Figure 1: Obesity is an independent risk factor for CKD with a complex pathophysiology involving shared risk factors, direct effects of obesity and indirect effects 

through promotion of vascular disease, hypertension and T2DM. Indirect effects through BP and hyperglycaemia are estimated to mediate up to 83% of the negative 
impact of obesity on CKD [14 ]. Mediation analyses of liraglutide and semaglutide in the T2DM CVOTs estimated up 48% mediation of kidney effects indirectly, through 
BP and hyperglycaemia [15 ]. Similar analyses are awaited for overweight/obesity trials in which participants did not have T2DM. 
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merican Heart Association [7 ]. Treatment for T2DM, obesity,
VD and CKD has converged on two families of drugs that have 
onvincing evidence of improved metabolic control of T2DM, de- 
reased body weight, improved control of blood pressure ( BP) 
nd decreased risk of cardiovascular and kidney events: sodium–
lucose co-transporter 2 inhibitors ( SGLT2is) and glucagon-like 
eptide-1 receptor agonists ( GLP-1 RAs; incretin analogues) [8 –
2 ]. While both families of drugs are approved by the European 
edicines Agency ( EMA) and the US Food and Drug Admin- 

stration ( FDA) to treat T2DM, other indications diverge. From 

he nephrologist’s point of view, clinical guidelines recommend 
GLT2is for kidney protection in persons with CKD with or with- 
ut T2DM and also GLP-1 RAs to optimize metabolic control in 
ersons with T2DM and CKD [11 , 12 ]. Guidelines will likely be 
pdated soon, given the kidney protection offered by semaglu- 
ide in the FLOW trial ( NCT03819153) in T2DM with albuminuric 
KD [13 ], expanding from the current indication and guideline- 
ecommended use to improve metabolic control. Thus the new 

rontier is using GLP-1 RAs to treat obesity/overweight in people 
t risk of CKD or already having CKD, even if T2DM is not present,
ith a holistic CKM aim of improving CVD, metabolic and kid- 
ey outcomes. This review addresses the promising landscape 
f GLP-1 RAs to treat persons with overweight/obesity, with or 
ithout T2DM, within the context of CKD or CKD prevention,
ssessing their impact on weight, metabolic control, BP and kid- 
ey and cardiovascular protection and their safety within a com- 
rehensive patient-centred approach. 

NRAVELLING THE COMPLEX RELATIONSHIP 

ETWEEN OVERWEIGHT/OBESITY AND CKD 

verweight and obesity are independent risk factors for the 
evelopment and progression of CKD [6 ]. The association be- 
ween overweight/obesity and CKD is thought to be causal and 
ediated mainly by T2DM and hypertension: 56–83% media- 

ion, depending on the methodology [14 , 15 ] ( Fig. 1 ) . Overall,
ssuming causality, an estimated 39% ( range 36–42%) of ad- 
anced CKD in women and 26% ( range 22–30%) in men 40–
9 years of age may result from overweight/obesity in England 
5 ]. Other potential links between obesity and CKD include the 
dverse impact on kidney health of the lifestyle and dietary 
atterns that caused overweight/obesity as well as direct ef- 
ects of overweight/obesity on kidney disease ( Fig. 1 ) [14 , 16 ].
he term obesity-related glomerulopathy refers to glomerular 
ypertrophy and adaptive focal segmental glomerulosclerosis 
 FSGS) resulting from obesity-induced glomerular hyperfiltra- 
ion [17 ]. The clinical manifestations are indistinguishable from 
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Table 1: Risk of kidney disease in persons with overweight/obesity [5 , 23 ]. 

BMI ( kg/m2 ) CKD G4–G5, HR ( 95% CI) BMI ( kg/m2 ) Kidney failure, HR ( 95% CI) 

25–< 30 1.34 ( 1.30–1.38) 25–< 30 1.87 ( 1.64–2.14) 
30–< 35 1.94, 1.87–2.01 30–< 35 3.57 ( 3.05–4.18) 
≥35 3.10, 2.95–3.25 35–< 40 6.12 ( 4.97–7.54 

≥40 7.07 ( 5.37–9.31 
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ther forms of secondary FSGS and characterized by single- 
ephron hyperfiltration, with or without global hyperfiltration,
nd subnephrotic proteinuria that responds to antiproteinuric 
rugs that decrease hyperfiltration, such as renin–angiotensin 
ystem ( RAS) blockers, mineralocorticoid receptor antagonists 
 MRAs) and, more recently, SGLT2is [17 –20 ]. As recently as 2016,
eight loss by hypocaloric diet or bariatric surgery was con-
idered to obtain the best antiproteinuric results. However, im- 
licitly recognizing the difficulty to lose weight, the 2016 report
mphasized novel research targeting molecular mechanisms of 
ipotoxicity [17 ]. Ectopic lipids ( sometimes referred to as fatty 
idneys) and renal sinus fat have been proposed to contribute 
o CKD in obesity [21 , 22 ]. 

While most literature refers to obesity, we should emphasize 
hat overweight, which is more common than obesity, is also as-
ociated with an increased risk of CKD, and GLP-1 RAs are ap-
roved for the treatment of overweight when BMI ≥27 kg/m2 is
ssociated with CVD risk factors, including hypertension. Each 
-kg/m2 increase in BMI above 25 kg/m2 was associated with 
igher renal mortality {hazard ratio [HR] 1.59 [95% confidence 
nterval ( CI) 1.27–1.99]} [6 ]. Higher BMI was also independently 
ssociated with an increased risk of CKD stage G4–G5 and kidney
ailure, already starting in the overweight range [HR 1.34 ( 95% CI
.30–1.38) and 1.87 ( 95% CI 1.64–2.14) , respectively] for BMI 25–
 30 kg/m2 [5 , 23 ] ( Table 1 ) . High BMI has been causally linked
o > 253 million global disability-adjusted life years, 6.5 million
eaths and almost 62 million years lived with disability from
KD, resulting in a higher global BMI-related burden for CKD
han for other conditions traditionally linked to obesity, such as
olorectal cancer [4 ]. 

VERWEIGHT, OBESITY, LIFESTYLE 

NTERVENTIONS AND CKD 

here is some evidence that lifestyle interventions to reduce 
eight in T2DM may be beneficial for CKD, although it is
erived from a secondary analysis of a clinical trial termi-
ated for futility. The Look AHEAD: Action for Health in Dia-
etes ( NCT00017953) clinical trial randomized 5145 overweight 
r obese persons 45–76 years of age with T2DM to inten-
ive lifestyle intervention to achieve and maintain weight loss 
hrough reduced caloric intake and increased physical activity 
 intervention) or diabetes support and education ( control) [24 ].
lthough planned for > 13 years, the trial was stopped for futility
n the primary composite outcome of death from cardiovascular 
auses, non-fatal myocardial infarction, non-fatal stroke or hos- 
italization for angina after a median follow-up of 9.6 years. In
he intervention arm, weight loss was greater in the first year
han at the end of follow-up ( 8.6% versus 0.7% in controls at
 year; 6.0% versus 3.5% at study end) . Haemoglobin A1c ( HbA1c; 
0.64% versus −0.14% in the first year) and systolic blood 
ressure ( SBP) ( −6.8 versus −2.8 mmHg) also decreased, but 
ifferences between arms got narrower over time ( e.g. average 
ver time difference in SBP was 1.9 mmHg) . The primary event
umulative incident curves started to diverge at 2–3 years, but
hen converged again as other differences narrowed over time.
owever, a secondary analysis showed a 31% reduction [HR
.69 ( 95% CI 0.55–0.87) ] in the risk of Kidney Disease: Improv-
ng Global Outcomes ( KDIGO) very-high-risk CKD, an effect only 
artly attributable to reductions in body weight, HbA1c and SBP
25 ]. Unlike for cardiovascular events, renal event cumulative in-
ident curves diverged over time, especially in women and in
hose with BMI < 35 kg/m2 . In any case, lifestyle interventions
hould always be recommended given their potential for benefit
n multiple chronic conditions. However, the fundamental chal-
enge of treating obesity solely with ‘lifestyle interventions’ is
he difficulty of maintaining these changes over time. 

NCRETINS, TWINCRETINS AND TRIAGONISTS 

he incretin phenomenon refers to an insulin secretory re-
ponse to oral glucose intake mediated by the gut-derived hor-
ones ( incretins) GLP-1 and glucose-dependent insulinotropic 
olypeptide ( GIP) [26 ]. GLP-1 and GIP are released by gut epithe-
ium in response to meals and stimulate their respective recep-
ors to promote insulin secretion and block glucagon release
 Fig. 2 ) . Incretins increase satiety and slow gastric emptying, de-
reasing food intake and contributing to weight loss. They are
egraded by dipeptidyl peptidase 4 ( DPP-4) . DPP-4 inhibitors are
sed as antidiabetic drugs but have not convincingly shown the
ardiovascular- and kidney-protective properties of GLP-1 RAs,
ikely because they also degrade multiple other peptides [27 ].
LP-1 RAs are analogues of GLP-1 or similar peptides from other
pecies ( e.g. exenatide is derived from Gila monster exendin-4)
hose amino acid sequence has been modified to resist degra-
ation by DPP-4, increasing their half-life, with an initial aim of
reating T2DM. 

More recently, the tirzepatide amino acid sequence was de-
igned to activate both GLP-1 and GIP receptors, which accounts
or the label of twincretin [28 ] ( Fig. 3 ) . Activation of two or three
eceptors may potentiate the effect on weight loss and glycaemic
ontrol [29 ]. Interestingly, a dual GLP-1/GIP receptor antagonist
lso induced pronounced weight loss, raising questions as to our
nderstanding of incretin physiology, as GIP receptor agonists
ay downregulate the receptor and actually decrease signalling

30 , 31 ]. The latest approach is represented by triagonists, such
s retatrutide, which activate the GLP-1, GIP and glucagon recep-
ors [32 ] ( Figs. 3 and 4 ) . Glucagon receptor agonism is aimed at
educing energy uptake, increasing energy consumption or both.
eptides can be combined, as in cagrisema ( semaglutide plus ca-
rilintide, an amylin receptor agonist) [33 , 34 ]. Natural amyline
s a pancreatic hormone inducing satiety. 

Unless otherwise specified, and given that twincretins also
ave GLP-1 RA activity, the term GLP-1 RA will be used for both
ypes of drugs in the present review. 
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Meal

Gut lumen

Secretion

Inactivation

Duodenum
Distal small intestine

and colon

K cell L cell

Pre-proGIP (153aa) Proglucagon (160aa) Pre-proIAPP (89aa)

Pancreatic
alpha cell

Pancreatic
beta cell

GIP (1–42)

GIP (3–42)

GIP Glucagon GLP-1 Amylin

AmylinGLP-1 (7–37)
GLP-1 (7–36)NH2

GLP-1 (9–37)
GLP-1 (9–36)NH2

Glucagon

Receptor-mediated
endocytosis

DPP4 Insulin-degrading
enzyme (IDE)

Kidney degradation

Figure 2: Physiology of GIP and GLP-1. Food ingestion triggers the release of incretins from gut neuroepithelial cells. GIP is encoded by the GIP gene and is generated by 
proteolysis of a precursor peptide ( preproGIP) by K cells in the duodenum. GLP-1 is encoded by the GCG gene that also encodes glucagon and GLP-2. GLP-1 is generated 
by proteolysis of a precursor peptide ( proglucagon) by L cells from the distal small intestine. Glucagon is also released from proglucagon, but in a different cell type 
( pancreatic alpha cells) . Amylin is a product of pancreatic beta cells. Both GIP and GLP-1 have incretin effects ( i.e. promote insulin release from pancreatic beta cells) 

and have additional shared and unique actions as reflected in Fig. 4 . Both have a short half-life ( ≈5 and 2 min for GIP and GLP-1, respectively) and are metabolized by 
DPP-4 into inactive peptides that are filtered by glomeruli and reabsorbed and further degraded by kidney proximal tubular cells. DPP-4 inhibitors are also antidiabetic 
drugs, but they degrade other peptides beyond the incretins and the clinical impact of DPP-4 inhibitors may thus differ from that of GLP-1R agonists or dual GLP-1R/GIPR 
agonists. Initially adapted from Baggio and Drucker [89 ] and expanded from reference Bosch et al. [28 ]. 
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LINICAL USE OF GLP-1 RAS AND 

WINCRETINS 

ix GLP-1 RAs ( exenatide, lixisenatide, dulaglutide, albiglutide,
iraglutide, subcutaneous and oral semaglutide) and a dual GIP–
LP-1 RA ( tirzepatide) have been approved by the EMA since 
005 to improve metabolic control in T2DM [35 ]. However, we 
ill focus on liraglutide, semaglutide and tirzepatide, which 
re also approved to promote weight loss in overweight/obesity 
 Table 2 , Fig. 5 ) [36 –40 ]. Beyond glycaemic control, GLP-1 RAs 
romote weight loss and improve lipid and BP control and car- 
iovascular and kidney outcomes, leading to trials addressing 
eight loss and cardiovascular outcomes in overweight/obesity 
s well as kidney outcomes in persons living with T2DM and CKD 
38 , 41 ]. Additionally, liraglutide and semaglutide are approved to 
educe CVD risk in patients with CVD who also have T2DM and 
emaglutide is approved to reduce CVD risk in adults with CVD 

nd overweight/obesity. The kidney protection observed in the 
LOW trial [13 ] is expected to result in a novel indication to slow
KD progression in persons with T2DM and CKD. 

VERWEIGHT, OBESITY AND CKD IN THE 2024 

DIGO GUIDELINES ON CKD 

he 2024 KDIGO guidelines on CKD state that physicians should 
onsider advising/encouraging people with obesity and CKD to 
ose weight [12 ]. Although no specific guidance is provided on 
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Figure 3: Structure of GLP-1, the GLP-1 RA semaglutide, GIP, the dual GLP-1 and GIP RA tirzepatide, glucagon and the triple agonist retatrutide. Amino acids are colour- 
coded reflecting shared or unique amino acids. Arrows identify amino acids that are unique for synthetic agonists. The thick arrow indicates aminoisobutyric acid 
( Aib) residues in positions 2 and 13, which are shared by semaglutide and tirzepatide, as well as in position 2 for retatrutide. Tirzepatide has a C-terminal amide and 
a lysine residue at position 20 attached to 1,20-eicosanedioic acid via a linker. The GLP-1, GIP and glucagon receptors are also shown. Initially adapted from Novikoff 

et al. [90 ] and then expanded from Bosch et al. [28 ]. 

Figure 4: Shared and unique metabolic actions by GLP-1, GIP, glucagon and amylin in key target organs that may be reproduced by tirzepatide, retatrutide and cagrisema. 
Putative direct cardiovascular and kidney effects are less well characterized in humans than metabolic effects. Expanded from Bosch et al. [28 ]. 
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Table 2: GLP-1 RA use in overweight/obesity: drugs approved to treat both T2DM and overweight/obesity. 

Approved indications 

Drug FDA EMA Use in CKD 

Liraglutide 
( Saxenda) 

Adults: BMI ≥30 kg/m2 or ≥27 kg/m2 in 
the presence of at least one 
weight-related comorbidity ( e.g. 
hypertension, T2DM or dyslipidaemia) 
( 2014) 
Adolescents ≥12 years of age with a body 
weight > 60 kg and BMI corresponding to 
30 kg/m2 for adults 

Adults: BMI ≥30 kg/m2 or ≥27–< 30 kg/m2 

in the presence of at least one 
weight-related comorbidity ( e.g. 
prediabetes or T2DM, hypertension, 
dyslipidaemia or obstructive sleep 
apnoea) ( 2015) 
Adolescents ≥12 years of age with a body 
weight > 60 kg and BMI corresponding to 
30 kg/m2 for adults 

No dose adjustment 
required a 

Semaglutide 
( Wegovy) 

Adults: BMI ≥30 kg/m2 or ≥27 kg/m2 in 
the presence of at least one 
weight-related comorbidity ( e.g. 
hypertension, T2DM or dyslipidaemia) 
( 2021) 
Adults: Indicated for reducing risks of 
MACE if overweight/obesity and 
established CVD ( 2024) 
Adolescents ≥12 years of age: obesity 
( BMI ≥95th percentile for sex and age) 

Adults: BMI ≥30 kg/m2 or ≥27–< 30 kg/m2 

in the presence of at least one 
weight-related comorbidity ( e.g. 
prediabetes or T2DM, hypertension, 
dyslipidaemia, obstructive sleep apnoea 
or CVD) ( 2022) 
Adolescents ≥12 years of age: obesity 
( BMI ≥95th percentile for sex and age) 
and body weight > 60 kg 

No dose adjustment 
required a 

Tirzepatide 
( Zepbound, 
Mounjaro) 

Zepbound. Adults: BMI ≥30 kg/m2 or 
≥27 kg/m2 in the presence of at least one 
weight-related comorbidity ( e.g. 
hypertension, dyslipidaemia, T2DM 

obstructive sleep apnoea or CVD) ( 2023) 

Mounjaro. Adults: BMI ≥30 kg/m2 or 
≥27–< 30 kg/m2 in the presence of at least 
one weight-related comorbidity ( e.g. 
hypertension, dyslipidaemia, obstructive 
sleep apnoea, CVD, prediabetes or T2DM) 
( 2023) 

No dose adjustment 
required 

The year of approval for adults is shown in parentheses. 

MACE: cardiovascular death or non-fatal myocardial infarction or stroke. 
a According to the FDA and KDIGO-ADA 2022. The EMA still indicates that it is not recommended if creatinine clearance is < 30 ml/min, including kidney failure. 
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ow to achieve weight loss, subsequent practice points state 
hat physicians should encourage people with CKD to under- 
ake physical activity and to adopt healthy and diverse di- 
ts with a higher consumption of plant-based than animal- 
ased foods and a lower consumption of ultraprocessed foods,
ince this may help slow CKD progression via a reduction 
f CKM risk factors such as hypertension, CVD, T2DM and 
besity. 
The KDIGO 2022 Clinical Practice Guideline for Diabetes 

anagement in CKD statement on obesity is also quite mild: 
hysicians should consider advising/encouraging patients with 
besity, diabetes and CKD to lose weight, particularly pa- 
ients with an estimated glomerular filtration rate ( eGFR) 
30 ml/min/1.73 m2 , although they also state that GLP-1 RA may 
e preferentially used in patients with obesity, T2DM and CKD 

o promote intentional weight loss, without warning about GFR 
hresholds. The caveat for those with lower eGFRs relates to con- 
ern about spontaneous reductions in dietary intake, malnutri- 
ion and muscle wasting, which apparently is not considered an 
ssue when using GLP-1 RAs. 

Neither guideline covers overweight, despite the existence of 
LP-1 RAs approved to decrease weight in persons with over- 
eight and conditions common in CKD such as hypertension 
nd CVD ( Table 2 ) [5 , 6 ]. We believe this is a major shortcoming 
f current CKD guidelines. However, the 2024 KDIGO guidelines 
n CKD recommend research to evaluate the effects of GLP-1 RAs 
n the risk of adverse cardiovascular outcomes and kidney dis- 
ase progression by designing trials that include persons with 
verweight/obesity without T2DM [12 ], trials that are discussed 

elow. 
VERWEIGHT, OBESITY, GLP-1 RAS AND CKD: 
PDATED EVIDENCE 

n T2DM cardiovascular outcomes trials ( CVOTs) , GLP-1 RAs 
rotected against CVD ( primary endpoint) and from CKD pro- 
ression ( secondary endpoint) [41 , 42 ]. The impact on kidney 
rotection was mainly driven by albuminuria [43 ]. Addition- 
lly, in SUSTAIN-9 ( NCT03086330) , GLP-1 RAs further decreased 
lycaemia and body weight in persons with T2DM who were 
n SGLT2i [44 ]. As a result, the 2022 and 2024 KDIGO guide-
ines for the treatment of CKD in T2DM indicate GLP-1 RAs 
s third-line antidiabetic drugs to improve glycaemic control 
hen not achieved by metformin and/or SGLT2i or if SGLT2i con- 
raindicated [11 , 12 ]. In contrast, the American Diabetes Associ- 
tion 2024 standards of care for T2DM list GLP-1 RAs as CKM
rugs recommended to reduce cardiorenal risk and to attain 
etabolic goals ( glycaemic and weight control) , emphasizing 

hat semaglutide and tirzepatide are the only antidiabetic drugs 
hat combine very high efficacy to achieve both metabolic goals 
45 ]. Thus the role of GLP-1 RAs in patients with CKD and T2DM is
ell established to improve metabolic control and was recently 
xpanded to include improved cardiorenal outcomes based on 
he FLOW trial of semaglutide [13 ], fulfilling a holistic CKM role
hen CKD is already present in patients with T2DM. Most par- 
icipants in the T2DM CVOTs for liraglutide, semaglutide and 
irzepatide had overweight or obesity ( 92–100%) [15 , 39 , 46 , 47 ] 
 Table 3 ) . Thus we may frame the evidence for the CKM benefit of
LP-1 RA as mainly obtained in people with overweight/obesity 
ither with T2DM ( initial CVOT) or without T2DM ( more recent 
rials) , including persons with CKD [13 , 20 ]. 
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Key phase 3 RCT with major kidney
or cardiovascular primary outcomes
Ongoing trials
Completed trials

T2DM

Overweight/
obese

CKD

Overweight/obese
with CKD

Liraglutide 

Semaglutide

Tirzepatide
SURMOUNT-MMO (NCT05556512)
n=15374 (2027)
eGFR ND
UACR ND
BMI ≥ 27.0, CVD or high CVD risk, no DM
Primary: MACE+
Secondary: MAKE

Semaglutide Tirzepatide
SURPASS-CVOT (vs. dulaglutide) 
n=13299 (2024)
eGFR ≥ 15
UACR ND
BMI ≥ 27.0, T2DM
Primary: MACE3
Secondary: UACR, MAKE

Semaglutide
SELECT
n=17609
eGFR ≥ 15
UACR ND
BMI ≥ 27.0 and CVD, not DM
Primary: MACE3
Secondary: UACR, MAKE

FLOW
n=3508
eGFR 25–75
UACR 100–5000 mg/g
T2DM and CKD
Primary: MAKE, CVD death
Secondary: MACE3

SUSTAIN 6
n=3297
eGFR: not on KRT
w or w/o albuminuria 
Primary MACE3
Secondary: MAKE
PIONEER 6
n=3183
eGFR > 30
w or w/o albuminuria 
Primary: MACE3
Secondary: MAKE

REDEFINE 3
(CagriSema, NCT05669755)
n=7000 (2027)
eGFR ≥ 15
UACR ND
BMI ≥ 25.0, CVD, w/wo T2DM
Primary: MACE3
Secondary: MAKE

LEADER
n=9341
eGFR > 30*
w or w/o 
albuminuria 
Primary MACE3
Secondary: MAKE

Overweight/obesity and CVD, no DM

T2DM and CKD

T2DM and CVD Overweight/obesity and T2DM

SOUL
n=9642 (2024)
eGFR ≥ 15
w or w/o albuminuria 
T2DM and
(CVD or CKD G3–G4)
Primary: MACE3
Secondary: MAKE

Figure 5: Key phase 3 RCT with kidney or cardiovascular primary outcomes of GLP-1 RAs approved for the treatment of both obesity and T2DM. Kidney failure, 
end-stage kidney disease or chronic or intermittent haemodialysis or peritoneal dialysis were equated with eGFR < 15 ml/min/1.73 m2 . KRT: kidney replacement 

therapy ( haemodialysis, peritoneal dialysis or kidney transplantation) ; ND: no data in clinicaltrials.gov; MACE3: cardiovascular death or non-lethal stroke or non- 
lethal myocardial infarction; MACE + : MACE plus additional criterion such as unstable angina; MAKE: major adverse kidney endpoints ( refers to endpoint based on 
decreased eGFR, either kidney failure or a percentage decrease in eGFR from baseline of renal death) ; UACR: refers to endpoints based on albuminuria; ND: no data. 
Trials are colour-coded ( orange: ongoing; green: completed; as of 24 April 2024) . References for trials with either published baseline characteristics or results: [38 –40 ]. 

For other ongoing trials, the clinicaltrials.gov identifier is provided. Trials are placebo-controlled unless otherwise specified. eGFR expressed as ml/min/1.73 m2 , UACR 
as mg/g and BMI as kg/m2 . *After randomization of 220 subjects with eGFR < 30 ml/min/1.73 m2 , patients on KRT were excluded. 
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Following the pathophysiological scheme in Fig. 1 , liraglu- 
ide, semaglutide and tirzepatide modulate shared risk factors 
or obesity and CKD, as they promote satiety, thus decreasing
ood intake, with all its components ( e.g. salt, phosphate) . They 
lso decreased body weight, potentially contributing to mitigate 
he direct impact of obesity on CKD. Finally, they improved other
isk factors for CKD progression ( glycaemia, BP) and decreased 
ardiovascular events. 

In addition to being approved to treat T2DM, GLP-1 RAs
revented the development of new-onset T2DM in over- 
eight/obese participants as exemplified by semaglutide in the 
ELECT CVOT ( NCT03574597) [HR for HbA1c ≥ 6.5%: 0.27 ( 95% CI 
.24–0.31) ] [48 ]. 

Before GLP-1 RAs, there was low evidence of the impact
f weight loss drugs on BP lowering, mostly based on small
tudies [49 ]. However, integration of results from recent GLP-
 RA and older weight loss drug trials suggest a good corre-
ation between weight loss and a decrease in BP ( R2 = 0.91
or SBP) , a result mainly driven by GLP-1 RAs ( Fig. 6 ) . Re-
atrutide decreased mean SBP by up to 12.1 mmHg in per-
ons with overweight/obesity not having uncontrolled hyper- 
ension [50 ], improving on results reported for tirzepatide [51 ]
nd semaglutide [52 ]. Additionally, 30–41% of participants in the
igher-dose groups discontinued at least one antihypertensive 
edication. 
A reduced risk of major adverse cardiovascular events
 MACE) was reported in CVOTs for T2DM for dulaglu-
ide [AWARD-7 ( NCT01621178) ] [53 ], liraglutide [LEADER 
 NCT01179048) ] [54 , 55 ], semaglutide [SUSTAIN-6 ( NCT01720446) ] 
55 ], albiglutide [Harmony Outcomes ( NCT02465515) ] [56 ] and
fpeglenatide [AMPLITUDE-O ( NCT03496298) ] [57 ]. CVOTs 
nrolled participants at high risk of CVD, including those
ith decreased renal function ( GFR > 15 ml/min/1.73 m2 ) . In
 combined analysis of subcutaneous ( SUSTAIN-6) and oral 
PIONEER 6 ( NCT02692716) ] T2DM CVOTs, semaglutide consis- 
ently reduced MACE risk versus placebo across all eGFR and
rinary albumin:creatinine ratio ( UACR) subgroups [58 ] Addi- 
ionally, semaglutide ( SELECT) reduced MACE in participants 
ith overweight/obesity and baseline CVD but no T2DM [48 ].
ardiovascular protection was also observed for patients with
KD G3 + ( eGFR < 60 ml/min/1.73 m2 ) and T2DM ( e.g. liraglutide
nd semaglutide) or overweight/obesity without T2DM ( e.g.
emaglutide) [15 , 48 , 54 , 55 ] ( Table 3 ) . In fact, the cardiovascular
rotection afforded to participants with CKD G3 + was even
arger than for participants with GFR > 60 ml/min/1.73 m2 , at
east numerically, for both T2DM and obesity. 

Through any of the mechanisms described above, GLP-
 RAs may improve CKD outcomes in patients with over-
eight/obesity and CKD. Indeed, kidney secondary outcomes 
rom CVOTs showed a decrease in albuminuria and in events
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Figure 6: Relationship between decrease in body weight and change in ( A) SBP and ( B) diastolic BP in recent clinical trials for weight loss drugs and in data from a 2021 
Cochrane review on the topic [49 –52 ]. 
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elated to decreased GFR when GLP-1 RAs were tested for T2DM 

 enrolling a majority of participants with overweight/obesity) 
r overweight/obesity without T2DM, as discussed below 

26 , 41 , 48 ] ( Table 3 ) . Additionally, there is observational in- 
ormation for > 1000 individuals with kidney failure ( eGFR 
 15 ml/min/1.73 m2 ) , with or without dialysis therapy, who were 
reated for T2DM with GLP-1 RAs [59 ]. In the largest study, from 

 National Health Insurance database, GLP-1 RAs were associ- 
ted with lower all-cause mortality [HR 0.79 ( 95% CI 0.63–0.98) ] 
nd sepsis- and infection-related mortality [HR 0.61 ( 95% CI 0.40–
.91) ] among people with T2DM and kidney failure than DPP-4 
nhibitors [60 ]. 

The kidney impact of semaglutide has been characterized in 
he greatest detail so far. We next summarize key results for 
iraglutide, semaglutide and tirzepatide on CKD outcomes ob- 
ained in patients with T2DM ( mostly with overweight/obesity) 
r with overweight/obesity but without T2DM. Of note, liraglu- 
ide and semaglutide decreased all-cause mortality in patients 
ith T2DM at high CVD risk and semaglutide also decreased all- 
ause mortality in patients with T2DM and CKD and in patients 
ith overweight/obesity and CVD without T2DM ( Table 3 ) [13 , 54 ,
1 –63 ]. 

IRAGLUTIDE 

iraglutide and semaglutide are products of the same manu- 
acturer. In the T2DM LEADER CVOT, liraglutide decreased the 
isk of MACE [HR 0.74 ( 95% CI 0.58–0.95) ], cardiovascular death 
HR 0.78 ( 95% CI 0.66–0.93) ] and a composite kidney outcome 
hat included A3 albuminuria [HR 0.78 ( 95% CI 0.67–0.92) ]. The 
R for worsening kidney function was more modest, at 0.89 

 95% CI 0.67–1.19) [41 ]. However, an in-depth clinical develop- 
ent program convincingly showed the superiority of semaglu- 

ide over liraglutide in terms of dosing ( weekly subcutaneous or 
ral versus daily subcutaneous) , magnitude of weight loss ( 15.8% 

ersus 6.4%) , tolerability and safety profile ( treatment discon- 
inuation 13.5% versus 27.6%) and value for money for weight 
eduction in head-to-head comparisons [45 , 64 , 65 ], so liraglu- 
ide will not be discussed further. 

EMAGLUTIDE 

ost participants in the T2DM clinical development program for 
emaglutide were overweight/obese and FLOW tested primary 
idney outcomes in CKD ( Table 3 ) . Additionally, semaglutide has 
een tested in overweight/obesity without T2DM [STEP program 

 NCT03548935) , SELECT] and there is secondary outcome infor- 
ation in CKD and on kidney outcomes [48 , 66 ]. 
In the T2DM CVOT SUSTAIN-6, subcutaneous semaglutide re- 

uced the risk of a secondary composite kidney outcome that 
ncluded A3 albuminuria[( HR 0.64 ( 95% CI 0.46–0.88) ] [41 ]. In 
 combined analysis of SUSTAIN-6 and the oral semaglutide 
2DM CVOT PIONEER 6 trial, semaglutide was associated with 
.59 ml/min/1.73 m2 ( 95% CI 0.29–0.89) lower annual eGFR slopes 
nd eGFR subgroup analysis was consistent with these results 
67 ]. Interestingly, weight loss was 43% greater in patients with 
KD G3–G4 than in those without CKD [58 ]. 
FLOW was the first GLP-1 RA trial with a primary renal 

ndpoint in patients with CKD. It enrolled 3534 participants 
ith T2DM, eGFR 25–75 ml/min/1.73 m2 and albuminuria 
00–5000 mg/g [38 ]. More than 88% of participants had over- 
eight/obesity. After a median follow-up of 3.4 years, it was 
rematurely stopped after the prespecified interim analysis 
howed a 24% relative risk reduction in the combined primary 
ndpoint of cardiovascular or kidney death or CKD progres- 
ion ( kidney failure or 50% decrease in eGFR) for semaglutide 
 mg/week [HR 0.76 ( 95% CI 0.66–0.88) ] [13 ]. Benefit was also 
bserved for a composite of the kidney-specific components of 
he primary outcome [HR 0.79 ( 95% CI 0.66–0.94) ], cardiovascular 
eath [HR 0.71 ( 95% CI 0.56–0.89) ], MACE [HR 0.82 ( 95% CI 0.68–
.98) ] and all-cause death [HR 0.80 ( 95% CI 0.67–0.95) ]. The mean 
nnual eGFR slope was 35% lower in the semaglutide group 
 difference 1.16 ml/min/1.73 m2 , P < .001) . A key unanswered 
uestion relates to the beneficial impact of semaglutide on 
idney outcomes for T2DM patients already on SGLT2i, as they 
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epresented just 15% of FLOW participants: despite non- 
ignificant P -values for heterogeneity for the primary outcome,
R values were consistently > 1.00 for most kidney outcomes

 the sole exception was kidney replacement therapy: HR 0.98) ,
ith evidence for heterogeneity for onset of a persistent ≥50%
eduction in eGFR [semaglutide versus placebo: HR 1.30 ( 95% CI 
.76–2.26) for participants on SGLT2i and HR 0.66 ( 95% CI 0.53–
.83) for participants not on SGLT2i; P for interaction = .023) ,
hile the HR for MACE or all cause-death was consistent
cross SGLT2i subgroups [68 ]. In contrast, in a metanalysis of 12
andomized, double-blind, placebo-controlled trials comprising 
065 of 73 238 participants ( 4.2%) with diabetes who were using 
LP-1 RAs at baseline, SGLT2i reduced the risk of CKD progres-
ion in participants both receiving and not receiving GLP-1 RAs
HR 0.65 ( 95% CI 0.46–0.94) versus HR 0.67 ( 95% CI 0.62–0.72) ; P for
eterogeneity = .81] [69 ]. Participants receiving GLP-1 RAs had a
igher BMI ( e.g. for those participating in CKD trials, mean BMI
5.4–35.7 kg/m2 versus 31.2 kg/m2 in those not on GLP-1 RAs) . 

In STEP-2 ( NCT03552757) , semaglutide ( 1.0–2.4 mg/week 
ubcutaneously) reduced albuminuria by 25% versus placebo 
n normoalbuminuric patients with overweight/obesity but not 
2DM and by 41–57% in 166 participants with A2/A3 albuminuria
70 ]. In STEP-4 ( NCT03548987) , maintenance semaglutide after 
0 weeks for another 48 weeks led to a further 7.9% bodyweight
oss for a total 17.4% weight loss over the whole trial, whereas
hose who switched to placebo regained an average 6.9% ( total 
eight loss of 5.0%) [66 ]. In STEP 5 ( NCT03693430) , semaglutide 

 2.4 mg/week subcutaneously) resulted in sustained weight loss 
or 2 years versus placebo in people with overweight/obesity 
ithout diabetes ( −15.2% versus −2.6%) [71 ]. The incidence of 
rediabetes or T2DM was 10-fold lower ( 14.3% versus 1.4%) 
nd 3-fold more participants stopped antihypertensive medi- 
ation ( 26.0% versus 8.2%) in the semaglutide arm. STEP UP 
 NCT05646706) is exploring the efficacy on weight loss and car- 
iometabolic impact of higher dose subcutaneous semaglu- 
ide ( up to 7.2 mg/week) in > 1400 people with obesity without
2DM. 
SELECT, the CVOT for subcutaneous semaglutide 

.4 mg/week in overweight/obesity without T2DM followed 
7 604 participants for 39.8 ± 9.4 months [20 , 48 ]. Semaglutide
ecreased the risk of a five-item secondary composite kidney 
utcome comprising decreased eGFR and A3 albuminuria [HR 
.78 ( 95% CI 0.63–0.96) ] and a five-item composite outcome based 
n decreased eGFR and cardiovascular death [HR 0.82 ( 95% CI 
.69–0.97) ]. The HR for a four-item kidney function endpoint was
.62 ( 95% CI 0.33–1.14) [20 , 48 ]. Additionally, a kidney benefit was
bserved for eGFR at 104 weeks ( difference 0.75 ml/min/1.73 m2 ; 
 < .001, over a loss of 1.61 ml/min/1.73 m2 on placebo) and the
hronic eGFR slope was 0.29 ml/min/1.73 m2 ( 95% CI 0.18–0.40) 
ower on semaglutide. Interestingly, the HR for the five-item 

 A3 albuminuria included) composite kidney outcome was 1.00,
.77, 0.68 and 0.46 for increasing baseline BMI, with wide CIs ( P
or heterogeneity = .27) . Overall, 2292 participants potentially 
ad CKD as diagnosed by albuminuria > 30 mg/g and 1908 as
iagnosed by eGFR < 60 ml/min/1.73 m2 . Kidney protection was
onsistent across albuminuria and eGFR categories. However,
or participants with eGFR < 60 ml/min/1.73 m2 the HR for the
ve-item composite kidney outcome that included A3 albu- 
inuria was 0.97 ( 95% CI 0.70–1.34; P for heterogeneity = 0.06)
nd surprisingly, eGFR increased in both arms, but more so for
emaglutide ( difference 2.19 ml/min/1.73 m2 ; P < .001) [20 ]. 

Ongoing randomized controlled trials ( RCTs) are explor- 
ng in-depth the benefits of semaglutide for weight-related 
onditions ( Supplementary Table S1) . 
IRZEPATIDE 

irzepatide led to more weight loss than semaglutide
.4 mg/week subcutaneously in overweight/obese patients 
ithout T2DM ( 15.0–20.9% depending on the dose up to
5 mg/week versus 14.9%) [51 , 52 ]. 

In obesity and T2DM, the SURPASS-4 trial ( NCT03730662) 
72 ] demonstrated a lower risk of the prespecified secondary
omposite kidney endpoint ( eGFR decline ≥40% from baseline,
enal death, kidney failure or new-onset macroalbuminuria) 
ompared with insulin glargine, mainly driven by decreased
lbuminuria, although eGFR slopes were also lower. The
hase 2 TREASURE-CKD ( NCT05536804) trial is currently ex- 
loring its impact on kidney oxygenation as assessed by
OLD MRI ( NCT05536804) . The SURPASS CVOT is comparing 
irzepatide with dulaglutide for T2DM and will be completed
ater this year, while SURMOUNT-MMO ( NCT05556512) is an 
verweight/obesity, no T2DM CVOT to be completed in 2027.
oth have secondary kidney outcomes. 
Ongoing RCTs are exploring in-depth the benefits of

irzepatide for weight-related conditions ( Supplementary
able S2) . 

HE PIPELINE OF GLP-1 RA AND CKD 

wo GLP-1 RAs in the clinical pipeline for overweight/obesity
erit comment, as they are being evaluated for kidney protec-

ion in ongoing RCTs [73 , 74 ] ( Supplementary Tables S1 and S3) . 
In a phase 2 trial, once weekly retatrutide reduced weight

y up to 24.2%, as compared with 2.1% on placebo at 48 weeks
n 338 persons with overweight/obesity, no T2DM and eGFR
45 ml/min/1.73 m2 [50 ]. Retatrutide is undergoing phase 3 tri-
ls in T2DM and obesity. Additionally, an ongoing phase 2 trial
 NCT05936151) has a primary endpoint of change in measured
FR in participants with overweight/obesity and CKD with or
ithout T2DM. 
In a phase 2 RCT, cagrilintide was as safe and as effective for

eight loss as liraglutide in overweight/obesity without T2DM
75 ]. In a T2DM phase 2 trial, cagrisema provided better gly-
aemic control and more weight loss than semaglutide or ca-
rilintide alone [34 ]. A phase 2 RCT ( NCT06131372) will ran-
omize 618 participants with CKD ( GFR > 15 ml/min/1.73 m2 ,
ACR > 100 mg/g) , T2DM and overweight/obesity to cagrisema,
emaglutide, cagrilintide or placebo, with a primary endpoint of
hange in UACR in 26 weeks. 

The international clinical development of efpeglenatide was 
topped, despite being the only exendin derivative that, in a
 terminated) phase 3 RCT, showed kidney benefit [HR 0.68 ( 95%
I 0.57–0.79) ] and a reduction in the primary MACE outcome in
2DM patients with a history of CVD or CKD plus at least one
ther cardiovascular risk factor [57 ]. However, weight loss was
ild ( 2.6 kg lower than placebo) . 

LP-1 RA MECHANISMS OF KIDNEY 

ROTECTION 

he molecular mechanism of kidney protection by GLP-1 RAs is
ess well understood than for SGLT2is, and comparing their clin-
cal impact may provide insights into differential mechanisms
 Fig. 7 ) ( 8 –12 , 48 , 76 –82 ) . An exploratory mediation analysis of the
ffects on kidney outcomes ( composite of macroalbuminuria,
ecreased GFR, renal death) with liraglutide and semaglutide 
n patients with T2DM in the LEADER and SUSTAIN-6 trials
bserved that HbA1c mediated 25–26% and SBP 9–22% of kidney

https://academic.oup.com/ckj/article-lookup/doi/10.1093/ckj/sfae296#supplementary-data
https://academic.oup.com/ckj/article-lookup/doi/10.1093/ckj/sfae296#supplementary-data
https://academic.oup.com/ckj/article-lookup/doi/10.1093/ckj/sfae296#supplementary-data
https://academic.oup.com/ckj/article-lookup/doi/10.1093/ckj/sfae296#supplementary-data
https://academic.oup.com/ckj/article-lookup/doi/10.1093/ckj/sfae296#supplementary-data
https://academic.oup.com/ckj/article-lookup/doi/10.1093/ckj/sfae296#supplementary-data
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Figure 7: Conceptual representation of the relative impact of SGLT2i and GLP-1 RA on key outcomes across the CKM spectrum. Note that differences in trial design, 
such as inclusion and exclusion criteria, precise definition of outcomes and follow-up time, may differ and thus results are not directly comparable. However, the 

conceptual representation provides a gross overview of therapeutic effects. Data obtained from [48 , 76 –82 ]. 
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ffects with a negligible contribution of the other parameters 
tudied, such as body weight [15 ]. Thus > 50% of the kidney 
rotective effect of GLP-1 RAs remains unexplained by easy-to- 
ssess clinical variables. The mechanisms involved may also 
iffer between classic GLP-1 RAs and twincretins. While SGLT2is 
irectly target kidney proximal tubular cells, the kidney cell 
argets for GLP-1 RAs are unclear. GLP-1 RAs induced an early 
ip in eGFR, suggesting decreased intraglomerular pressure 
nd decreased glomerular hyperfiltration, followed by slower 
GFR loss in the overall population of GFR subgroups com- 
ared with placebo [13 , 20 ], a feature shared with all currently 
nown nephroprotective drugs ranging from renin–angiotensin 
lockers to mineralocorticoid receptor antagonists to SGLT2is 
o tolvaptan [67 ]. However, the magnitude of the eGFR decrease 
ppears to be milder than for SGLT2is in T2DM patients with 
imilar baseline eGFRs ( Fig. 8 ) [67 , 79 , 80 ]. The REMODEL trial 
 NCT04865770) is exploring the mechanisms of human kidney 
rotection by semaglutide in 105 patients with T2DM and CKD 

hrough a combination of multiparametric MRI, histology and 
ingle-nucleus RNA sequencing ( expected completion: end 
f 2024) . An early transient eGFR decrease associated with a 
ransient decrease in albuminuria was also observed in over- 
eight/obese participants without DM in the SELECT trial [20 ].
imilar to REMODEL, the SMART trial ( NCT04889183) , completed 
n 2024, explored mechanisms of human kidney protection 
y 2.4 mg subcutaneous semaglutide in 125 overweight/obese 
articipants with A2–A3 albuminuria without T2DM, with a pri- 
ary endpoint of albuminuria. In addition to well-characterized 
etabolic effects ( Figs. 1 and 4 ) , multiple potential mechanisms 
f kidney protection have been described experimentally 
 e.g. natriuretic effect via Na+ /H+ exchanger 3, angiotensin 
I, inflammation and oxidative stress) , although their clinical 
elevance in patients treated with multiple other agents that 
lso target similar ‘usual suspect’ pathways is unclear [83 –87 ]. 

afety 

LP-1 RAs were safe and serious adverse effects were generally 
s common or even less common than in the placebo arms in
oth T2DM and overweight/obesity trials [48 , 54 , 88 ] ( 13 ) . The 
ain adverse effects leading to drug discontinuation were gas- 

rointestinal disorders. For example, for semaglutide, these oc- 
urred in 5.1–5.9% versus 0.9–1.8% of controls in SUSTAIN-6 and 
IONEER 6 and in ≈10% versus 2% of placebo patients in SELECT 
48 , 88 ]. Safety data on participants with CKD are not usually
eported separately. However, in one analysis, severe gastroin- 
estinal adverse effects increased as eGFR decreased in both the 
emaglutide and placebo arms, but the difference between both 
rms remained stable [58 ]. In FLOW, semaglutide was safer than 
lacebo in T2DM with CKD, mostly with overweight/obesity [13 ]: 
he incidence rate of serious adverse events per 100 patient- 
ears was 10% lower for semaglutide. Although 4.5% ( versus 
.1% with placebo) discontinued the drug because of gastroin- 
estinal disorders, the incidence rate of serious gastrointesti- 
al disorders was similar ( 2.4 versus 2.1 per 100 patient-years) .
mong participants with eGFR < 60 ml/min/1.73 m2 in the SE- 
ECT trial ( overweight/obesity, no DM) , serious adverse events 
ere 21% less common among those randomized to semaglutide 
han to placebo and fatal events and acute kidney injury were 
alved ( 4.9% versus 9.8% and 3.5% versus 6.7%, respectively) [20 ].
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Figure 8: The early decrease in eGFR induced by SGLT2is and GLP-1 RAs appears to differ in magnitude. Results are presented for the EMPA-REG OUTCOME trial 
( NCT01131676) and SUSTAIN-6 trials performed in people with T2DM who had similar baseline eGFR values [55 , 81 ]. 
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owever, nearly 1 in 4 ( 22.0% versus 13.8% in placebo and 15.9%
n semaglutide with preserved kidney function) stopped treat- 
ent because of adverse events. 

ONCLUSIONS 

n conclusion, GLP-1 RAs, and especially twincretins, are the 
afest and most effective drugs to treat overweight/obesity. They 
ay benefit patients with either overweight/obesity or T2DM 

hrough improving dietary habits, decreasing risk or improving 
ontrol of T2DM, hypertension and CVD and weight loss, all of
hich may contribute to prevent CKD onset or slow its progres-
ion and decrease all-cause mortality, and these benefits are 
lso observed in patients with CKD. Notice the continued ref-
rence to both overweight and obesity, since referring only to
besity may contribute to overlooking the risks and therapeutic 
pportunities associated with overweight. Currently, semaglu- 
ide is the best characterized GLP-1 RA in the context of over-
eight/obesity, CVD risk and kidney disease, but the clinical de-
elopment program for tirzepatide is expected to be completed 
ith CVD information and preliminary kidney disease results in 
he next 3 years. Even more potent drugs, such as retatrutide and
agrisema, are in the clinical pipeline. Nephrologists should em- 
race the holistic CKM approach to chronic disease and be part
f the ongoing metabolic revolution by thinking beyond T2DM 

nd becoming familiar with the beneficial effects of GLP-1 RAs
n CVD and CKD risk in patients with overweight/obesity inde-
endent of the presence of T2DM or CKD. Beyond kidney pa-
ients, nephrologists are central players in the CKM syndrome 
nd should become public health advocates of CKM health for
ociety and primary care colleagues. GLP-1 RAs may become 
rst-line kidney protective drugs in overweight/obesity without 
2DM or CKD in the near future. Once T2DM or CKD has de-
eloped, the practicalities of their integration with other kidney 
rotective drugs such as SGLT2is should be further explored. Fi-
ally, the widespread use of GLP-1 RAs is limited by high costs
nd accessibility issues. Governments and pharmaceutical com- 
anies should work together to address these issues. 
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