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ABSTRACT

Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) have emerged as game-changers across the
cardiovascular-kidney-metabolic (CKM) spectrum: overweight/obesity, type 2 diabetes mellitus (T2DM) and associated
chronic kidney disease (CKD) and cardiovascular disease (CVD). Liraglutide, semaglutide and tirzepatide are European
Medicines Agency approved to improve metabolic control in T2DM and to decrease weight in persons with obesity [body
mass index (BMI) >30 kg/m?] or with overweight (BMI >27 kg/m?) associated with weight-related comorbidities such as
hypertension, dyslipidaemia, CVD and others. Additionally, liraglutide and semaglutide are approved to reduce CVD risk
in patients with CVD and T2DM. Semaglutide is also approved to reduce CVD risk in patients with CVD and either
obesity or overweight and in phase 3 clinical trials showed kidney and cardiovascular protection in patients with T2DM
and albuminuric CKD (FLOW trial) as well as in persons without diabetes that had CVD and overweight/obesity (SELECT
trial). Thus, nephrologists should consider prescribing GLP-1 RAs to improve metabolic control, reduce CVD risk or
improve kidney outcomes in three scenarios: patients with overweight and a related comorbid condition such as
hypertension, dyslipidaemia or CVD, patients with obesity and patients with T2DM. This review addresses the promising
landscape of GLP-1 RAs to treat persons with overweight or obesity, with or without T2DM, within the context of CKD,
assessing their safety and impact on weight, metabolic control, blood pressure and kidney and cardiovascular outcomes,
as part of a holistic patient-centred approach to preserve CKM health.
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INTRODUCTION

Chronic kidney disease (CKD) is among the fastest growing
causes of death worldwide, driven by population aging and
the increasing prevalence of overweight/obesity, type 2 diabetes
mellitus (T2DM) and hypertension [1]. Overweight and obe-
sity are defined by the World Health Organization as having a
body mass index (BMI) >25-<30 and >30 kg/m?, respectively [2].

More than half of the world’s population is projected to have
overweight/obesity by 2035 [3]. Overweight and obesity are in-
dependently associated with an increased risk of cardiovas-
cular disease (CVD), which causes death in more than two-
thirds of patients [4]. Furthermore, obesity increases the risk of
T2DM, hypertension and CKD [5, 6]. The three conditions fre-
quently coexist, as recently emphasized by the cardiovascular—
kidney-metabolic (CKM) syndrome scientific statement from the
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Figure 1: Obesity is an independent risk factor for CKD with a complex pathophysiology involving shared risk factors, direct effects of obesity and indirect effects
through promotion of vascular disease, hypertension and T2DM. Indirect effects through BP and hyperglycaemia are estimated to mediate up to 83% of the negative
impact of obesity on CKD [14]. Mediation analyses of liraglutide and semaglutide in the T2DM CVOTs estimated up 48% mediation of kidney effects indirectly, through
BP and hyperglycaemia [15]. Similar analyses are awaited for overweight/obesity trials in which participants did not have T2DM.

American Heart Association [7]. Treatment for T2DM, obesity,
CVD and CKD has converged on two families of drugs that have
convincing evidence of improved metabolic control of T2DM, de-
creased body weight, improved control of blood pressure (BP)
and decreased risk of cardiovascular and kidney events: sodium-
glucose co-transporter 2 inhibitors (SGLT2is) and glucagon-like
peptide-1 receptor agonists (GLP-1 RAs; incretin analogues) [8-
12]. While both families of drugs are approved by the European
Medicines Agency (EMA) and the US Food and Drug Admin-
istration (FDA) to treat T2DM, other indications diverge. From
the nephrologist’s point of view, clinical guidelines recommend
SGLT2is for kidney protection in persons with CKD with or with-
out T2DM and also GLP-1 RAs to optimize metabolic control in
persons with T2DM and CKD [11, 12]. Guidelines will likely be
updated soon, given the kidney protection offered by semaglu-
tide in the FLOW trial (NCT03819153) in T2DM with albuminuric
CKD [13], expanding from the current indication and guideline-
recommended use to improve metabolic control. Thus the new
frontier is using GLP-1 RAs to treat obesity/overweight in people
atrisk of CKD or already having CKD, even if T2DM is not present,
with a holistic CKM aim of improving CVD, metabolic and kid-
ney outcomes. This review addresses the promising landscape
of GLP-1 RAs to treat persons with overweight/obesity, with or
without T2DM, within the context of CKD or CKD prevention,

assessing their impact on weight, metabolic control, BP and kid-
ney and cardiovascular protection and their safety within a com-
prehensive patient-centred approach.

UNRAVELLING THE COMPLEX RELATIONSHIP
BETWEEN OVERWEIGHT/OBESITY AND CKD

Overweight and obesity are independent risk factors for the
development and progression of CKD [6]. The association be-
tween overweight/obesity and CKD is thought to be causal and
mediated mainly by T2DM and hypertension: 56-83% media-
tion, depending on the methodology [14, 15] (Fig. 1). Overall,
assuming causality, an estimated 39% (range 36-42%) of ad-
vanced CKD in women and 26% (range 22-30%) in men 40-
79 years of age may result from overweight/obesity in England
[5]. Other potential links between obesity and CKD include the
adverse impact on kidney health of the lifestyle and dietary
patterns that caused overweight/obesity as well as direct ef-
fects of overweight/obesity on kidney disease (Fig. 1) [14, 16].
The term obesity-related glomerulopathy refers to glomerular
hypertrophy and adaptive focal segmental glomerulosclerosis
(FSGS) resulting from obesity-induced glomerular hyperfiltra-
tion [17]. The clinical manifestations are indistinguishable from
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Table 1: Risk of kidney disease in persons with overweight/obesity [5, 23].

BMI (kg/m?) CKD G4-G5, HR (95% CI) BMI (kg/m?) Kidney failure, HR (95% CI)
25-<30 1.34 (1.30-1.38) 25-<30 1.87 (1.64-2.14)
30-<35 1.94,1.87-2.01 30-<35 3.57 (3.05-4.18)
>35 3.10, 2.95-3.25 35-<40 6.12 (4.97-7.54

>40

7.07 (5.37-9.31

other forms of secondary FSGS and characterized by single-
nephron hyperfiltration, with or without global hyperfiltration,
and subnephrotic proteinuria that responds to antiproteinuric
drugs that decrease hyperfiltration, such as renin-angiotensin
system (RAS) blockers, mineralocorticoid receptor antagonists
(MRAs) and, more recently, SGLT2is [17-20]. As recently as 2016,
weight loss by hypocaloric diet or bariatric surgery was con-
sidered to obtain the best antiproteinuric results. However, im-
plicitly recognizing the difficulty to lose weight, the 2016 report
emphasized novel research targeting molecular mechanisms of
lipotoxicity [17]. Ectopic lipids (sometimes referred to as fatty
kidneys) and renal sinus fat have been proposed to contribute
to CKD in obesity [21, 22].

While most literature refers to obesity, we should emphasize
that overweight, which is more common than obesity, is also as-
sociated with an increased risk of CKD, and GLP-1 RAs are ap-
proved for the treatment of overweight when BMI >27 kg/m? is
associated with CVD risk factors, including hypertension. Each
5-kg/m? increase in BMI above 25 kg/m? was associated with
higher renal mortality {hazard ratio [HR] 1.59 [95% confidence
interval (CI) 1.27-1.99]} [6]. Higher BMI was also independently
associated with an increased risk of CKD stage G4-G5 and kidney
failure, already starting in the overweight range [HR 1.34 (95% CI
1.30-1.38) and 1.87 (95% CI 1.64-2.14), respectively] for BMI 25-
<30 kg/m? [5, 23] (Table 1). High BMI has been causally linked
to >253 million global disability-adjusted life years, 6.5 million
deaths and almost 62 million years lived with disability from
CKD, resulting in a higher global BMI-related burden for CKD
than for other conditions traditionally linked to obesity, such as
colorectal cancer [4].

OVERWEIGHT, OBESITY, LIFESTYLE
INTERVENTIONS AND CKD

There is some evidence that lifestyle interventions to reduce
weight in T2DM may be beneficial for CKD, although it is
derived from a secondary analysis of a clinical trial termi-
nated for futility. The Look AHEAD: Action for Health in Dia-
betes (NCT00017953) clinical trial randomized 5145 overweight
or obese persons 45-76 years of age with T2DM to inten-
sive lifestyle intervention to achieve and maintain weight loss
through reduced caloric intake and increased physical activity
(intervention) or diabetes support and education (control) [24].
Although planned for >13 years, the trial was stopped for futility
on the primary composite outcome of death from cardiovascular
causes, non-fatal myocardial infarction, non-fatal stroke or hos-
pitalization for angina after a median follow-up of 9.6 years. In
the intervention arm, weight loss was greater in the first year
than at the end of follow-up (8.6% versus 0.7% in controls at
1year; 6.0% versus 3.5% at study end). Haemoglobin Alc (HbAlc;
—0.64% versus —0.14% in the first year) and systolic blood
pressure (SBP) (—6.8 versus —2.8 mmHg) also decreased, but

differences between arms got narrower over time (e.g. average
over time difference in SBP was 1.9 mmHg). The primary event
cumulative incident curves started to diverge at 2-3 years, but
then converged again as other differences narrowed over time.
However, a secondary analysis showed a 31% reduction [HR
0.69 (95% CI 0.55-0.87)] in the risk of Kidney Disease: Improv-
ing Global Outcomes (KDIGO) very-high-risk CKD, an effect only
partly attributable to reductions in body weight, HbAlc and SBP
[25]. Unlike for cardiovascular events, renal event cumulative in-
cident curves diverged over time, especially in women and in
those with BMI <35 kg/m?. In any case, lifestyle interventions
should always be recommended given their potential for benefit
in multiple chronic conditions. However, the fundamental chal-
lenge of treating obesity solely with ‘lifestyle interventions’ is
the difficulty of maintaining these changes over time.

INCRETINS, TWINCRETINS AND TRIAGONISTS

The incretin phenomenon refers to an insulin secretory re-
sponse to oral glucose intake mediated by the gut-derived hor-
mones (incretins) GLP-1 and glucose-dependent insulinotropic
polypeptide (GIP) [26]. GLP-1 and GIP are released by gut epithe-
lium in response to meals and stimulate their respective recep-
tors to promote insulin secretion and block glucagon release
(Fig. 2). Incretins increase satiety and slow gastric emptying, de-
creasing food intake and contributing to weight loss. They are
degraded by dipeptidyl peptidase 4 (DPP-4). DPP-4 inhibitors are
used as antidiabetic drugs but have not convincingly shown the
cardiovascular- and kidney-protective properties of GLP-1 RAs,
likely because they also degrade multiple other peptides [27].
GLP-1 RAs are analogues of GLP-1 or similar peptides from other
species (e.g. exenatide is derived from Gila monster exendin-4)
whose amino acid sequence has been modified to resist degra-
dation by DPP-4, increasing their half-life, with an initial aim of
treating T2DM.

More recently, the tirzepatide amino acid sequence was de-
signed to activate both GLP-1 and GIP receptors, which accounts
for the label of twincretin [28] (Fig. 3). Activation of two or three
receptors may potentiate the effect on weightloss and glycaemic
control [29]. Interestingly, a dual GLP-1/GIP receptor antagonist
also induced pronounced weight loss, raising questions as to our
understanding of incretin physiology, as GIP receptor agonists
may downregulate the receptor and actually decrease signalling
[30, 31]. The latest approach is represented by triagonists, such
as retatrutide, which activate the GLP-1, GIP and glucagon recep-
tors [32] (Figs. 3 and 4). Glucagon receptor agonism is aimed at
reducing energy uptake, increasing energy consumption or both.
Peptides can be combined, as in cagrisema (semaglutide plus ca-
grilintide, an amylin receptor agonist) [33, 34]. Natural amyline
is a pancreatic hormone inducing satiety.

Unless otherwise specified, and given that twincretins also
have GLP-1 RA activity, the term GLP-1 RA will be used for both
types of drugs in the present review.
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Figure 2: Physiology of GIP and GLP-1. Food ingestion triggers the release of incretins from gut neuroepithelial cells. GIP is encoded by the GIP gene and is generated by
proteolysis of a precursor peptide (preproGIP) by K cells in the duodenum. GLP-1 is encoded by the GCG gene that also encodes glucagon and GLP-2. GLP-1 is generated
by proteolysis of a precursor peptide (proglucagon) by L cells from the distal small intestine. Glucagon is also released from proglucagon, but in a different cell type
(pancreatic alpha cells). Amylin is a product of pancreatic beta cells. Both GIP and GLP-1 have incretin effects (i.e. promote insulin release from pancreatic beta cells)
and have additional shared and unique actions as reflected in Fig. 4. Both have a short half-life (~5 and 2 min for GIP and GLP-1, respectively) and are metabolized by
DPP-4 into inactive peptides that are filtered by glomeruli and reabsorbed and further degraded by kidney proximal tubular cells. DPP-4 inhibitors are also antidiabetic
drugs, but they degrade other peptides beyond the incretins and the clinical impact of DPP-4 inhibitors may thus differ from that of GLP-1R agonists or dual GLP-1R/GIPR
agonists. Initially adapted from Baggio and Drucker [89] and expanded from reference Bosch et al. [28].

CLINICAL USE OF GLP-1 RAS AND
TWINCRETINS

Six GLP-1 RAs (exenatide, lixisenatide, dulaglutide, albiglutide,
liraglutide, subcutaneous and oral semaglutide) and a dual GIP-
GLP-1 RA (tirzepatide) have been approved by the EMA since
2005 to improve metabolic control in T2DM [35]. However, we
will focus on liraglutide, semaglutide and tirzepatide, which
are also approved to promote weight loss in overweight/obesity
(Table 2, Fig. 5) [36-40]. Beyond glycaemic control, GLP-1 RAs
promote weight loss and improve lipid and BP control and car-
diovascular and kidney outcomes, leading to trials addressing
weight loss and cardiovascular outcomes in overweight/obesity
as well as kidney outcomes in persons living with T2DM and CKD

[38,41]. Additionally, liraglutide and semaglutide are approved to
reduce CVD risk in patients with CVD who also have T2DM and
semaglutide is approved to reduce CVD risk in adults with CVD
and overweight/obesity. The kidney protection observed in the
FLOW trial [13] is expected to result in a novel indication to slow
CKD progression in persons with T2DM and CKD.

OVERWEIGHT, OBESITY AND CKD IN THE 2024
KDIGO GUIDELINES ON CKD

The 2024 KDIGO guidelines on CKD state that physicians should
consider advising/encouraging people with obesity and CKD to
lose weight [12]. Although no specific guidance is provided on

Gzoz Atenuer gz uo ysenb Aq £/6506.2/6L1/2 uewe|ddng// | /ejo1ue/ho/woo dno-olwspeoe//:sdiy woly pepeojumoq



GLP-1RAs in CKD and obesity | ii23

/ 1,20-eicosanediodic acid /
OO0 ) OOE®() Semaglutide :;;;Mﬂﬂ“ﬂ[ggg
GLP1-R
GLP-1
00000000000000000000000000000000000000000CK poon ] 14
GIP-R
Tirzepatide 1
Retatrutide
(AEEA)-gamma-Glu-C20 diacid
0000000000000 000000000000000 KT Uglgﬂﬂﬂﬂ
Key

o Exendin-4 (not GLP-1) e Unique

@ GLP-1 %@ GLP-1 and GIP
@ GIP g-@ GIP and Glucagon
Glucagon g@ GLP-1 and Glucagon

@ GLP1, GIP and Glucagon
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coded reflecting shared or unique amino acids. Arrows identify amino acids that are unique for synthetic agonists. The thick arrow indicates aminoisobutyric acid
(Aib) residues in positions 2 and 13, which are shared by semaglutide and tirzepatide, as well as in position 2 for retatrutide. Tirzepatide has a C-terminal amide and
a lysine residue at position 20 attached to 1,20-eicosanedioic acid via a linker. The GLP-1, GIP and glucagon receptors are also shown. Initially adapted from Novikoff
et al. [90] and then expanded from Bosch et al. [28].
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Putative direct cardiovascular and kidney effects are less well characterized in humans than metabolic effects. Expanded from Bosch et al. [28].
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Table 2: GLP-1 RA use in overweight/obesity: drugs approved to treat both T2DM and overweight/obesity.

Approved indications

Drug FDA EMA Use in CKD
Liraglutide Adults: BMI >30 kg/m? or >27 kg/m? in Adults: BMI >30 kg/m? or >27-<30 kg/m? No dose adjustment
(Saxenda) the presence of at least one in the presence of at least one required?®

weight-related comorbidity (e.g. weight-related comorbidity (e.g.

hypertension, T2DM or dyslipidaemia) prediabetes or T2DM, hypertension,

(2014) dyslipidaemia or obstructive sleep

Adolescents >12 years of age with a body apnoea) (2015)

weight >60 kg and BMI corresponding to Adolescents >12 years of age with a body

30 kg/m? for adults weight >60 kg and BMI corresponding to

30 kg/m? for adults

Semaglutide Adults: BMI >30 kg/m? or >27 kg/m? in Adults: BMI >30 kg/m? or >27-<30 kg/m? No dose adjustment
(Wegovy) the presence of at least one in the presence of at least one required?®

weight-related comorbidity (e.g. weight-related comorbidity (e.g.

hypertension, T2DM or dyslipidaemia) prediabetes or T2DM, hypertension,

(2021) dyslipidaemia, obstructive sleep apnoea

Adults: Indicated for reducing risks of or CVD) (2022)

MACE if overweight/obesity and Adolescents >12 years of age: obesity

established CVD (2024) (BMI >95th percentile for sex and age)

Adolescents >12 years of age: obesity and body weight >60 kg

(BMI >95th percentile for sex and age)
Tirzepatide Zepbound. Adults: BMI >30 kg/m? or Mounjaro. Adults: BMI >30 kg/m? or No dose adjustment
(Zepbound, >27 kg/m? in the presence of at least one >27-<30 kg/m? in the presence of at least required
Mounjaro) weight-related comorbidity (e.g. one weight-related comorbidity (e.g.

hypertension, dyslipidaemia, T2DM
obstructive sleep apnoea or CVD) (2023)

hypertension, dyslipidaemia, obstructive
sleep apnoea, CVD, prediabetes or T2DM)
(2023)

The year of approval for adults is shown in parentheses.
MACE: cardiovascular death or non-fatal myocardial infarction or stroke.

2According to the FDA and KDIGO-ADA 2022. The EMA still indicates that it is not recommended if creatinine clearance is <30 ml/min, including kidney failure.

how to achieve weight loss, subsequent practice points state
that physicians should encourage people with CKD to under-
take physical activity and to adopt healthy and diverse di-
ets with a higher consumption of plant-based than animal-
based foods and a lower consumption of ultraprocessed foods,
since this may help slow CKD progression via a reduction
of CKM risk factors such as hypertension, CVD, T2DM and
obesity.

The KDIGO 2022 Clinical Practice Guideline for Diabetes
Management in CKD statement on obesity is also quite mild:
physicians should consider advising/encouraging patients with
obesity, diabetes and CKD to lose weight, particularly pa-
tients with an estimated glomerular filtration rate (eGFR)
>30 ml/min/1.73 m?, although they also state that GLP-1 RA may
be preferentially used in patients with obesity, T2DM and CKD
to promote intentional weight loss, without warning about GFR
thresholds. The caveat for those with lower eGFRs relates to con-
cern about spontaneous reductions in dietary intake, malnutri-
tion and muscle wasting, which apparently is not considered an
issue when using GLP-1 RAs.

Neither guideline covers overweight, despite the existence of
GLP-1 RAs approved to decrease weight in persons with over-
weight and conditions common in CKD such as hypertension
and CVD (Table 2) [5, 6]. We believe this is a major shortcoming
of current CKD guidelines. However, the 2024 KDIGO guidelines
on CKD recommend research to evaluate the effects of GLP-1RAs
on the risk of adverse cardiovascular outcomes and kidney dis-
ease progression by designing trials that include persons with
overweight/obesity without T2DM [12], trials that are discussed
below.

OVERWEIGHT, OBESITY, GLP-1 RAS AND CKD:
UPDATED EVIDENCE

In T2DM cardiovascular outcomes trials (CVOTs), GLP-1 RAs
protected against CVD (primary endpoint) and from CKD pro-
gression (secondary endpoint) [41, 42]. The impact on kidney
protection was mainly driven by albuminuria [43]. Addition-
ally, in SUSTAIN-9 (NCT03086330), GLP-1 RAs further decreased
glycaemia and body weight in persons with T2DM who were
on SGLT2i [44]. As a result, the 2022 and 2024 KDIGO guide-
lines for the treatment of CKD in T2DM indicate GLP-1 RAs
as third-line antidiabetic drugs to improve glycaemic control
when not achieved by metformin and/or SGLT2i or if SGLT2i con-
traindicated [11, 12]. In contrast, the American Diabetes Associ-
ation 2024 standards of care for T2DM list GLP-1 RAs as CKM
drugs recommended to reduce cardiorenal risk and to attain
metabolic goals (glycaemic and weight control), emphasizing
that semaglutide and tirzepatide are the only antidiabetic drugs
that combine very high efficacy to achieve both metabolic goals
[45]. Thus the role of GLP-1 RAs in patients with CKD and T2DM is
well established to improve metabolic control and was recently
expanded to include improved cardiorenal outcomes based on
the FLOW trial of semaglutide [13], fulfilling a holistic CKM role
when CKD is already present in patients with T2DM. Most par-
ticipants in the T2DM CVOTs for liraglutide, semaglutide and
tirzepatide had overweight or obesity (92-100%) [15, 39, 46, 47]
(Table 3). Thus we may frame the evidence for the CKM benefit of
GLP-1 RA as mainly obtained in people with overweight/obesity
either with T2DM (initial CVOT) or without T2DM (more recent
trials), including persons with CKD [13, 20].
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Overweight/
obese

REDEFINE 3

(CagriSema, NCT05669755)
n=7000 (2027)

eGFR =15

UACR ND

BMI = 25.0, CVD, w/wo T2DM
Primary: MACE3

Secondary: MAKE

Key phase 3 RCT with major kidney
or cardiovascular primary outcomes

Ongoing trials
Completed trials

Figure 5: Key phase 3 RCT with kidney or cardiovascular primary outcomes of GLP-1 RAs approved for the treatment of both obesity and T2DM. Kidney failure,
end-stage kidney disease or chronic or intermittent haemodialysis or peritoneal dialysis were equated with eGFR <15 ml/min/1.73 m?. KRT: kidney replacement
therapy (haemodialysis, peritoneal dialysis or kidney transplantation); ND: no data in clinicaltrials.gov; MACE3: cardiovascular death or non-lethal stroke or non-
lethal myocardial infarction; MACE+: MACE plus additional criterion such as unstable angina; MAKE: major adverse kidney endpoints (refers to endpoint based on
decreased eGFR, either kidney failure or a percentage decrease in eGFR from baseline of renal death); UACR: refers to endpoints based on albuminuria; ND: no data.
Trials are colour-coded (orange: ongoing; green: completed; as of 24 April 2024). References for trials with either published baseline characteristics or results: [38-40].
For other ongoing trials, the clinicaltrials.gov identifier is provided. Trials are placebo-controlled unless otherwise specified. eGFR expressed as ml/min/1.73 m?, UACR
as mg/g and BMI as kg/m?. *After randomization of 220 subjects with eGFR <30 ml/min/1.73 m?, patients on KRT were excluded.

Following the pathophysiological scheme in Fig. 1, liraglu-
tide, semaglutide and tirzepatide modulate shared risk factors
for obesity and CKD, as they promote satiety, thus decreasing
food intake, with all its components (e.g. salt, phosphate). They
also decreased body weight, potentially contributing to mitigate
the direct impact of obesity on CKD. Finally, they improved other
risk factors for CKD progression (glycaemia, BP) and decreased
cardiovascular events.

In addition to being approved to treat T2DM, GLP-1 RAs
prevented the development of new-onset T2DM in over-
weight/obese participants as exemplified by semaglutide in the
SELECT CVOT (NCT03574597) [HR for HbAlc > 6.5%: 0.27 (95% CI
0.24-0.31)] [48].

Before GLP-1 RAs, there was low evidence of the impact
of weight loss drugs on BP lowering, mostly based on small
studies [49]. However, integration of results from recent GLP-
1 RA and older weight loss drug trials suggest a good corre-
lation between weight loss and a decrease in BP (R? = 0.91
for SBP), a result mainly driven by GLP-1 RAs (Fig. 6). Re-
tatrutide decreased mean SBP by up to 12.1 mmHg in per-
sons with overweight/obesity not having uncontrolled hyper-
tension [50], improving on results reported for tirzepatide [51]
and semaglutide [52]. Additionally, 30-41% of participants in the
higher-dose groups discontinued at least one antihypertensive
medication.

A reduced risk of major adverse cardiovascular events
(MACE) was reported in CVOTs for T2DM for dulaglu-
tide [AWARD-7 (NCT01621178)] [53], liraglutide [LEADER
(NCT01179048)] [54, 5], semaglutide [SUSTAIN-6 (NCT01720446)]
[55], albiglutide [Harmony Outcomes (NCT02465515)] [56] and
efpeglenatide [AMPLITUDE-O (NCT03496298)] [57]. CVOTs
enrolled participants at high risk of CVD, including those
with decreased renal function (GFR >15 ml/min/1.73 m?). In
a combined analysis of subcutaneous (SUSTAIN-6) and oral
[PIONEER 6 (NCT02692716)] T2DM CVOTs, semaglutide consis-
tently reduced MACE risk versus placebo across all eGFR and
urinary albumin:creatinine ratio (UACR) subgroups [58] Addi-
tionally, semaglutide (SELECT) reduced MACE in participants
with overweight/obesity and baseline CVD but no T2DM [48].
Cardiovascular protection was also observed for patients with
CKD G3+ (eGFR <60 ml/min/1.73 m?) and T2DM (e.g. liraglutide
and semaglutide) or overweight/obesity without T2DM (e.g.
semaglutide) [15, 48, 54, 55] (Table 3). In fact, the cardiovascular
protection afforded to participants with CKD G3+ was even
larger than for participants with GFR >60 ml/min/1.73 m?, at
least numerically, for both T2DM and obesity.

Through any of the mechanisms described above, GLP-
1 RAs may improve CKD outcomes in patients with over-
weight/obesity and CKD. Indeed, kidney secondary outcomes
from CVOTs showed a decrease in albuminuria and in events
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Figure 6: Relationship between decrease in body weight and change in (A) SBP and (B) diastolic BP in recent clinical trials for weight loss drugs and in data from a 2021

Cochrane review on the topic [49-52].

related to decreased GFR when GLP-1 RAs were tested for T2DM
(enrolling a majority of participants with overweight/obesity)
or overweight/obesity without T2DM, as discussed below
[26, 41, 48] (Table 3). Additionally, there is observational in-
formation for >1000 individuals with kidney failure (eGFR
<15 ml/min/1.73 m?), with or without dialysis therapy, who were
treated for T2DM with GLP-1 RAs [59]. In the largest study, from
a National Health Insurance database, GLP-1 RAs were associ-
ated with lower all-cause mortality [HR 0.79 (95% CI 0.63-0.98)]
and sepsis- and infection-related mortality [HR 0.61 (95% CI 0.40—
0.91)] among people with T2DM and kidney failure than DPP-4
inhibitors [60].

The kidney impact of semaglutide has been characterized in
the greatest detail so far. We next summarize key results for
liraglutide, semaglutide and tirzepatide on CKD outcomes ob-
tained in patients with T2DM (mostly with overweight/obesity)
or with overweight/obesity but without T2DM. Of note, liraglu-
tide and semaglutide decreased all-cause mortality in patients
with T2DM at high CVD risk and semaglutide also decreased all-
cause mortality in patients with T2DM and CKD and in patients
with overweight/obesity and CVD without T2DM (Table 3) [13, 54,
61-63].

LIRAGLUTIDE

Liraglutide and semaglutide are products of the same manu-
facturer. In the T2DM LEADER CVOT, liraglutide decreased the
risk of MACE [HR 0.74 (95% CI 0.58-0.95)], cardiovascular death
[HR 0.78 (95% CI 0.66-0.93)] and a composite kidney outcome
that included A3 albuminuria [HR 0.78 (95% CI 0.67-0.92)]. The
HR for worsening kidney function was more modest, at 0.89
(95% CI 0.67-1.19) [41]. However, an in-depth clinical develop-
ment program convincingly showed the superiority of semaglu-
tide over liraglutide in terms of dosing (weekly subcutaneous or
oral versus daily subcutaneous), magnitude of weight loss (15.8%
versus 6.4%), tolerability and safety profile (treatment discon-
tinuation 13.5% versus 27.6%) and value for money for weight

reduction in head-to-head comparisons [45, 64, 65], so liraglu-
tide will not be discussed further.

SEMAGLUTIDE

Most participants in the T2DM clinical development program for
semaglutide were overweight/obese and FLOW tested primary
kidney outcomes in CKD (Table 3). Additionally, semaglutide has
been tested in overweight/obesity without T2DM [STEP program
(NCT03548935), SELECT] and there is secondary outcome infor-
mation in CKD and on kidney outcomes [48, 66].

In the T2DM CVOT SUSTAIN-6, subcutaneous semaglutide re-
duced the risk of a secondary composite kidney outcome that
included A3 albuminuria[(HR 0.64 (95% CI 0.46-0.88)] [41]. In
a combined analysis of SUSTAIN-6 and the oral semaglutide
T2DM CVOT PIONEER 6 trial, semaglutide was associated with
0.59 ml/min/1.73 m? (95% CI 0.29-0.89) lower annual eGFR slopes
and eGFR subgroup analysis was consistent with these results
[67]. Interestingly, weight loss was 43% greater in patients with
CKD G3-G4 than in those without CKD [58].

FLOW was the first GLP-1 RA trial with a primary renal
endpoint in patients with CKD. It enrolled 3534 participants
with T2DM, eGFR 25-75 ml/min/1.73 m? and albuminuria
300-5000 mg/g [38]. More than 88% of participants had over-
weight/obesity. After a median follow-up of 3.4 years, it was
prematurely stopped after the prespecified interim analysis
showed a 24% relative risk reduction in the combined primary
endpoint of cardiovascular or kidney death or CKD progres-
sion (kidney failure or 50% decrease in eGFR) for semaglutide
1 mg/week [HR 0.76 (95% CI 0.66-0.88)] [13]. Benefit was also
observed for a composite of the kidney-specific components of
the primary outcome [HR 0.79 (95% CI 0.66-0.94)], cardiovascular
death [HR 0.71 (95% CI 0.56-0.89)], MACE [HR 0.82 (95% CI 0.68—
0.98)] and all-cause death [HR 0.80 (95% CI 0.67-0.95)]. The mean
annual eGFR slope was 35% lower in the semaglutide group
(difference 1.16 ml/min/1.73 m?, P < .001). A key unanswered
question relates to the beneficial impact of semaglutide on
kidney outcomes for T2DM patients already on SGLT2i, as they
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represented just 15% of FLOW participants: despite non-
significant P-values for heterogeneity for the primary outcome,
HR values were consistently >1.00 for most kidney outcomes
(the sole exception was kidney replacement therapy: HR 0.98),
with evidence for heterogeneity for onset of a persistent >50%
reduction in eGFR [semaglutide versus placebo: HR 1.30 (95% CI
0.76-2.26) for participants on SGLT2i and HR 0.66 (95% CI 0.53—
0.83) for participants not on SGLT2i; P for interaction = .023),
while the HR for MACE or all cause-death was consistent
across SGLT2i subgroups [68]. In contrast, in a metanalysis of 12
randomized, double-blind, placebo-controlled trials comprising
3065 of 73 238 participants (4.2%) with diabetes who were using
GLP-1 RAs at baseline, SGLT2i reduced the risk of CKD progres-
sion in participants both receiving and not receiving GLP-1 RAs
[HR 0.65 (95% CI 0.46-0.94) versus HR 0.67 (95% CI 0.62-0.72); P for
heterogeneity = .81] [69]. Participants receiving GLP-1 RAs had a
higher BMI (e.g. for those participating in CKD trials, mean BMI
35.4-35.7 kg/m? versus 31.2 kg/m? in those not on GLP-1 RAs).

In STEP-2 (NCTO03552757), semaglutide (1.0-2.4 mg/week
subcutaneously) reduced albuminuria by 25% versus placebo
in normoalbuminuric patients with overweight/obesity but not
T2DM and by 41-57% in 166 participants with A2/A3 albuminuria
[70]. In STEP-4 (NCT03548987), maintenance semaglutide after
20 weeks for another 48 weeks led to a further 7.9% bodyweight
loss for a total 17.4% weight loss over the whole trial, whereas
those who switched to placebo regained an average 6.9% (total
weight loss of 5.0%) [66]. In STEP 5 (NCT03693430), semaglutide
(2.4 mg/week subcutaneously) resulted in sustained weight loss
for 2 years versus placebo in people with overweight/obesity
without diabetes (—15.2% versus —2.6%) [71]. The incidence of
prediabetes or T2DM was 10-fold lower (14.3% versus 1.4%)
and 3-fold more participants stopped antihypertensive medi-
cation (26.0% versus 8.2%) in the semaglutide arm. STEP UP
(NCT05646706) is exploring the efficacy on weight loss and car-
diometabolic impact of higher dose subcutaneous semaglu-
tide (up to 7.2 mg/week) in >1400 people with obesity without
T2DM.

SELECT, the CVOT for subcutaneous semaglutide
2.4 mg/week in overweight/obesity without T2DM followed
17 604 participants for 39.8 + 9.4 months [20, 48]. Semaglutide
decreased the risk of a five-item secondary composite kidney
outcome comprising decreased eGFR and A3 albuminuria [HR
0.78 (95% C10.63-0.96)] and a five-item composite outcome based
on decreased eGFR and cardiovascular death [HR 0.82 (95% CI
0.69-0.97)]. The HR for a four-item kidney function endpoint was
0.62 (95% CI 0.33-1.14) [20, 48]. Additionally, a kidney benefit was
observed for eGFR at 104 weeks (difference 0.75 ml/min/1.73 m?;
P < .001, over a loss of 1.61 ml/min/1.73 m? on placebo) and the
chronic eGFR slope was 0.29 ml/min/1.73 m? (95% CI 0.18-0.40)
lower on semaglutide. Interestingly, the HR for the five-item
(A3 albuminuria included) composite kidney outcome was 1.00,
0.77,0.68 and 0.46 for increasing baseline BMI, with wide CIs (P
for heterogeneity = .27). Overall, 2292 participants potentially
had CKD as diagnosed by albuminuria >30 mg/g and 1908 as
diagnosed by eGFR <60 ml/min/1.73 m?. Kidney protection was
consistent across albuminuria and eGFR categories. However,
for participants with eGFR <60 ml/min/1.73 m? the HR for the
five-item composite kidney outcome that included A3 albu-
minuria was 0.97 (95% CI 0.70-1.34; P for heterogeneity = 0.06)
and surprisingly, eGFR increased in both arms, but more so for
semaglutide (difference 2.19 ml/min/1.73 m?; P < .001) [20].

Ongoing randomized controlled trials (RCTs) are explor-
ing in-depth the benefits of semaglutide for weight-related
conditions (Supplementary Table S1).
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TIRZEPATIDE

Tirzepatide led to more weight loss than semaglutide
2.4 mg/week subcutaneously in overweight/obese patients
without T2DM (15.0-20.9% depending on the dose up to
15 mg/week versus 14.9%) [51, 52].

In obesity and T2DM, the SURPASS-4 trial (NCT03730662)
[72] demonstrated a lower risk of the prespecified secondary
composite kidney endpoint (eGFR decline >40% from baseline,
renal death, kidney failure or new-onset macroalbuminuria)
compared with insulin glargine, mainly driven by decreased
albuminuria, although eGFR slopes were also lower. The
phase 2 TREASURE-CKD (NCT05536804) trial is currently ex-
ploring its impact on kidney oxygenation as assessed by
BOLD MRI (NCT05536804). The SURPASS CVOT is comparing
tirzepatide with dulaglutide for T2DM and will be completed
later this year, while SURMOUNT-MMO (NCT05556512) is an
overweight/obesity, no T2DM CVOT to be completed in 2027.
Both have secondary kidney outcomes.

Ongoing RCTs are exploring in-depth the benefits of
tirzepatide for weight-related conditions (Supplementary
Table S2).

THE PIPELINE OF GLP-1 RA AND CKD

Two GLP-1 RAs in the clinical pipeline for overweight/obesity
merit comment, as they are being evaluated for kidney protec-
tion in ongoing RCTs [73, 74] (Supplementary Tables S1 and S3).

In a phase 2 trial, once weekly retatrutide reduced weight
by up to 24.2%, as compared with 2.1% on placebo at 48 weeks
in 338 persons with overweight/obesity, no T2DM and eGFR
>45 ml/min/1.73 m? [50]. Retatrutide is undergoing phase 3 tri-
als in T2DM and obesity. Additionally, an ongoing phase 2 trial
(NCT05936151) has a primary endpoint of change in measured
GFR in participants with overweight/obesity and CKD with or
without T2DM.

In a phase 2 RCT, cagrilintide was as safe and as effective for
weight loss as liraglutide in overweight/obesity without T2DM
[75]. In a T2DM phase 2 trial, cagrisema provided better gly-
caemic control and more weight loss than semaglutide or ca-
grilintide alone [34]. A phase 2 RCT (NCT06131372) will ran-
domize 618 participants with CKD (GFR >15 ml/min/1.73 m?,
UACR >100 mg/g), T2DM and overweight/obesity to cagrisema,
semaglutide, cagrilintide or placebo, with a primary endpoint of
change in UACR in 26 weeks.

The international clinical development of efpeglenatide was
stopped, despite being the only exendin derivative that, in a
(terminated) phase 3 RCT, showed kidney benefit [HR 0.68 (95%
CI 0.57-0.79)] and a reduction in the primary MACE outcome in
T2DM patients with a history of CVD or CKD plus at least one
other cardiovascular risk factor [57]. However, weight loss was
mild (2.6 kg lower than placebo).

GLP-1 RA MECHANISMS OF KIDNEY
PROTECTION

The molecular mechanism of kidney protection by GLP-1 RAs is
less well understood than for SGLT2is, and comparing their clin-
ical impact may provide insights into differential mechanisms
(Fig.7) (8-12, 48, 76-82). An exploratory mediation analysis of the
effects on kidney outcomes (composite of macroalbuminuria,
decreased GFR, renal death) with liraglutide and semaglutide
in patients with T2DM in the LEADER and SUSTAIN-6 trials
observed that HbAlc mediated 25-26% and SBP 9-22% of kidney
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SGLT2i GLP1ra
Weight loss | 2 | 6-9 | Kg reduction
Metabolic control in T2DM 02 [ 1.8 | HbA1C (% reduction)
Blood pressure control | 1.9-2.7 | 3.5-7.3 | mmHg reduction
CVD risk
MACE* - 14% | 26% | % RRR events (CVD death, stroke, M)
Heart failure | 30% | 1% | % RRR HF hospitalization
CKD progression risk
T2DM* | 36% | 24% | % RRR (decrease eGFR, kidney failure, KRT) FLOW
Non-T2DM*** | 29% ) % RRR (decrease eGFR, kidney failure, KRT)
Overweight/obesity
Clinical T2DM | T2DM
indications CKD
Heart failure

* Cardiovascular death or non-lethal stroke or myocardial infarction
** FLOW

*** No primary outcome data on GLP1ra and a CKD-only non-diabetic population

Figure 7: Conceptual representation of the relative impact of SGLT2i and GLP-1 RA on key outcomes across the CKM spectrum. Note that differences in trial design,
such as inclusion and exclusion criteria, precise definition of outcomes and follow-up time, may differ and thus results are not directly comparable. However, the
conceptual representation provides a gross overview of therapeutic effects. Data obtained from [48, 76-82].

effects with a negligible contribution of the other parameters
studied, such as body weight [15]. Thus >50% of the kidney
protective effect of GLP-1 RAs remains unexplained by easy-to-
assess clinical variables. The mechanisms involved may also
differ between classic GLP-1 RAs and twincretins. While SGLT2is
directly target kidney proximal tubular cells, the kidney cell
targets for GLP-1 RAs are unclear. GLP-1 RAs induced an early
dip in eGFR, suggesting decreased intraglomerular pressure
and decreased glomerular hyperfiltration, followed by slower
eGFR loss in the overall population of GFR subgroups com-
pared with placebo [13, 20], a feature shared with all currently
known nephroprotective drugs ranging from renin-angiotensin
blockers to mineralocorticoid receptor antagonists to SGLT2is
to tolvaptan [67]. However, the magnitude of the eGFR decrease
appears to be milder than for SGLT2is in T2DM patients with
similar baseline eGFRs (Fig. 8) [67, 79, 80]. The REMODEL trial
(NCT04865770) is exploring the mechanisms of human kidney
protection by semaglutide in 105 patients with T2DM and CKD
through a combination of multiparametric MRI, histology and
single-nucleus RNA sequencing (expected completion: end
of 2024). An early transient eGFR decrease associated with a
transient decrease in albuminuria was also observed in over-
weight/obese participants without DM in the SELECT trial [20].
Similar to REMODEL, the SMART trial (NCT04889183), completed
in 2024, explored mechanisms of human kidney protection
by 2.4 mg subcutaneous semaglutide in 125 overweight/obese
participants with A2-A3 albuminuria without T2DM, with a pri-
mary endpoint of albuminuria. In addition to well-characterized
metabolic effects (Figs. 1 and 4), multiple potential mechanisms
of kidney protection have been described experimentally

(e.g. natriuretic effect via Na®/H' exchanger 3, angiotensin
II, inflammation and oxidative stress), although their clinical
relevance in patients treated with multiple other agents that
also target similar ‘usual suspect’ pathways is unclear [83-87].

Safety

GLP-1 RAs were safe and serious adverse effects were generally
as common or even less common than in the placebo arms in
both T2DM and overweight/obesity trials [48, 54, 88] (13). The
main adverse effects leading to drug discontinuation were gas-
trointestinal disorders. For example, for semaglutide, these oc-
curred in 5.1-5.9% versus 0.9-1.8% of controls in SUSTAIN-6 and
PIONEER 6 and in ~10% versus 2% of placebo patients in SELECT
[48, 88]. Safety data on participants with CKD are not usually
reported separately. However, in one analysis, severe gastroin-
testinal adverse effects increased as eGFR decreased in both the
semaglutide and placebo arms, but the difference between both
arms remained stable [58]. In FLOW, semaglutide was safer than
placebo in T2DM with CKD, mostly with overweight/obesity [13]:
the incidence rate of serious adverse events per 100 patient-
years was 10% lower for semaglutide. Although 4.5% (versus
1.1% with placebo) discontinued the drug because of gastroin-
testinal disorders, the incidence rate of serious gastrointesti-
nal disorders was similar (2.4 versus 2.1 per 100 patient-years).
Among participants with eGFR <60 ml/min/1.73 m? in the SE-
LECT trial (overweight/obesity, no DM), serious adverse events
were 21% less common among those randomized to semaglutide
than to placebo and fatal events and acute kidney injury were
halved (4.9% versus 9.8% and 3.5% versus 6.7%, respectively) [20].
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Figure 8: The early decrease in eGFR induced by SGLT2is and GLP-1 RAs appears to differ in magnitude. Results are presented for the EMPA-REG OUTCOME trial
(NCT01131676) and SUSTAIN-6 trials performed in people with T2DM who had similar baseline eGFR values [55, 81].

However, nearly 1 in 4 (22.0% versus 13.8% in placebo and 15.9%
on semaglutide with preserved kidney function) stopped treat-
ment because of adverse events.

CONCLUSIONS

In conclusion, GLP-1 RAs, and especially twincretins, are the
safest and most effective drugs to treat overweight/obesity. They
may benefit patients with either overweight/obesity or T2DM
through improving dietary habits, decreasing risk or improving
control of T2DM, hypertension and CVD and weight loss, all of
which may contribute to prevent CKD onset or slow its progres-
sion and decrease all-cause mortality, and these benefits are
also observed in patients with CKD. Notice the continued ref-
erence to both overweight and obesity, since referring only to
obesity may contribute to overlooking the risks and therapeutic
opportunities associated with overweight. Currently, semaglu-
tide is the best characterized GLP-1 RA in the context of over-
weight/obesity, CVD risk and kidney disease, but the clinical de-
velopment program for tirzepatide is expected to be completed
with CVD information and preliminary kidney disease results in
the next 3 years. Even more potent drugs, such as retatrutide and
cagrisema, are in the clinical pipeline. Nephrologists should em-
brace the holistic CKM approach to chronic disease and be part
of the ongoing metabolic revolution by thinking beyond T2DM
and becoming familiar with the beneficial effects of GLP-1 RAs
on CVD and CKD risk in patients with overweight/obesity inde-
pendent of the presence of T2DM or CKD. Beyond kidney pa-
tients, nephrologists are central players in the CKM syndrome
and should become public health advocates of CKM health for
society and primary care colleagues. GLP-1 RAs may become
first-line kidney protective drugs in overweight/obesity without
T2DM or CKD in the near future. Once T2DM or CKD has de-
veloped, the practicalities of their integration with other kidney
protective drugs such as SGLT2is should be further explored. Fi-
nally, the widespread use of GLP-1 RAs is limited by high costs
and accessibility issues. Governments and pharmaceutical com-
panies should work together to address these issues.
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